Πληροφορίες
Κωδικός Μαθήματος | TAE463 |
Εξάμηνο | 7ο |
Κατηγορία | Επιλογής |
Διδακτικές Μονάδες | 3 |
Μονάδες ECTS | 5 |
Eclass Μαθήματος | https://eclass.upatras.gr/courses/PHY1988/ |
Διδάσκων
Προτεινόμενη Βιβλιογραφία
Συνιστώμενη βιβλιογραφία προς μελέτη
«Δυναμικά Συστήματα και Εφαρμογές», Δ. Σουρλάς, Πανεπιστημιακές Σημειώσεις 2015.
«Δυναμικά Συστήματα και Χάος» Α και Β Τόμος, Α. Μπούντης, Εκδόσεις Παπασωτηρίου 1995.
«Μη Γραμμικές Συνήθεις Διαφορικές Εξισώσεις», Α. Μπούντης, Εκδόσεις Πνευματικού, 1997.
«Ο θαυμαστός κόσμος των Fractals», Α. Μπούντης, Εκδόσεις Leader Books, 2004.
“Dynamical Systems with Applications using Matlab” S. Lynch, Birkhauser 2014.
“Differential Equations and Dynamical Systems” , L. Perko, Springer, 2000.
“Dynamics and Bifurcations”, J. Hale, H. Kocak, Springer-Verlag, 1991.
“Nonlinear Oscilations, Dynamical Systems and Bifurcations of Vector Fields” J. Guckenheimer, P. Holmes, Springer,1983.
“Chaos, An Introduction to Dynamical Systems”, K. Alligoog, T. Sauer, J. Yorke, Springer, 1997.
“Differential Equations, Dynamical Systems and an Introduction to Chaos”, M. Hirsch, S. Smale, R. Devaney, Elsevier Academic Press, 2004.
Περιγαφή Μαθήματος
Επιδιωκόμενα μαθησιακά αποτελέσματα του μαθήματος
Μετά την επιτυχή εξέταση του μαθήματος, ο φοιτητής θα είναι σε θέση να:
1. μελετά γραμμικά και μη γραμμικά συστήματα
2. βρίσκει οριακούς κύκλους
3. μελετά Xαμιλτονιακά συστήματα
4. βρίσκει σημεία διακλαδώσεως
5. χρησιμοποιεί την απεικόνιση Poincare για την μελέτη μη αυτόνομων συστημάτων δ.ε.
6. εφαρμόζει την θεωρία για την μοντελοποίηση πληθυσμών ενός είδους
7. βρίσκει διακλαδώσεις διπλασιασμού περιόδου
8. ξέρει τι είναι ένα σύνολο fractal
9. μπορεί να χρησιμοποιεί το μαθηματικό πακέτο Matlab
Δεξιότητες
Μετά την επιτυχή εξέταση του μαθήματος, ο φοιτητής θα είναι σε θέση να:
1. ταξινομεί τα κρίσιμα σημεία στο επίπεδο
2. κατασκευάζει τα φασικά διαγράμματα χρησιμοποιώντας τις ισοκλινείς καμπύλες, τα διευθύνοντα πεδία, τις ιδιοτιμές
3. αποδεικνύει την ύπαρξη και την μοναδικότητα των οριακών κύκλων
4. σχεδιάζει το φασικό πορτραίτο των Χαμιλτινιανών συστημάτων
5. περιγράφει πως ένα φασικό πορτραίτο αλλάζει όταν αλλάζει μια παράμετρος
6. ερμηνεύει τα διαγράμματα διακλαδώσεως
7. χρησιμοποιεί την απεικόνιση Poincare σαν εργαλείο για την μελέτη της ευστάθειας και των διακλαδώσεων
8. παράγει γραφικές επαναλήψεις σε απεικονίσεις μιας διαστάσεως
9. εκτελεί απλές μιγαδικές επαναλήψεις
10. σχεδιάζει ορισμένα fractal σύνολα χρησιμοποιώντας το μαθηματικό πακέτο Matlab
11. εφαρμόζει την θεωρία σε συστήματα με διαφορετικό επίπεδο πολυπλοκότητας: classical mechanics, fluids, systems biology, sociophysics, game theory, ecology, neuroscience, etc
Προαπαιτήσεις
1. Συνήθεις Διαφορικές Εξισώσεις
2. Γραμμική Άλγεβρα
Περιεχόμενα (ύλη) του μαθήματος
1. Εισαγωγή στα Δυναμικά Συστήματα
- Αυτόνομες Διαφορικές Εξισώσεις 1ης τάξης: Κρίσιμα σημεία, ευστάθεια, γραμμική ανάλυση ευστάθειας, ύπαρξη και μοναδικότητα, διακλαδώσεις
2. Αυτόνομα Συστήματα στο επίπεδο
- Γραμμικά Συστήματα στο επίπεδο: ταξινόμηση, ευσταθείς και ασταθείς πολλαπλότητες, διαγράμματα φάσεων
- Μη Γραμμικά Συστήματα στο επίπεδο: τοπολογική ισοδυναμία, κρίσιμα σημεία και γραμμικοποίηση, διαγράμματα φάσεων
- Οριακοί κύκλοι: υπαρξη και μοναδικότητα, μη-ύπαρξη οριακών κύκλων
- Διακλαδώσεις: σάγματος-κόμβου, μετακρίσιμη, διχάλας, Hopf
- Χαμιλτονιανά Συστήματα, Παράγωγα Συστήματα, Αντιστρέψιμα Συστήματα
3. Μη αυτόνομα Συστήματα στο επίπεδο
- Απεικονίσεις Poincare
4. Αυτόνομα Συστήματα τριών διαστάσεων και Χάος
- Γραμμικά και μη-γραμμικά συστήματα: κρίσιμα σημεία, ευστάθεια, διαγράμματα φάσεων
- Οι εξισώσεις Lorenz: ιδιότητες, κρίσιμα σημεία, ασυμπτωτική ευστάθεια, παράξενοι ελκυστές, χάος
5. Διακριτά Δυναμικά Συστήματα
- Γραμμικά και μη-γραμμικά διακριτά συστήματα: σταθερά σημεία, ευστάθεια, cobwebs, περιοδικές λύσεις, τροχιές, ακολουθίες διπλασσιασμού περιόδου
- Τριγωνική απεικόνιση
- Λογιστική απεικόνιση και η σταθερά Feigenbaum
6. Πολυπλοκότητα
- Μιγαδικές επαναληπτικές απεικονίσεις
- Φράκταλς
- Δίκτυα
Διδακτικές και μαθησιακές μέθοδοι
Παραδόσεις με τον κλασικό τρόπο, (πίνακας, κιμωλία), με σύγχρονη χρήση παρουσιάσεων, (Powerpoint), και του μαθηματικού πακέτου Matlab.
Μέθοδοι αξιολόγησης/βαθμολόγησης
1. Εβδομαδιαία παράδοση σειράς ασκήσεων
2. Προφορική Εξέταση
Γλώσσα διδασκαλίας
Ελληνική